The question about universality can now be phrased as:
a) are the FP coefficients (
and
)
universal?
b) is the FP zero point (
)
universal?
JFK96 addressed both questions.
Based on data for 226 E and S0 galaxies in 10 nearby clusters,
they determined
,
,
and
for each cluster.
They found that
and
were not significantly different
from cluster to cluster, although variations of
of the order 10% could not be ruled out.
Furthermore, they did not find
and
to correlate with the distance to the cluster
(more precisely
),
the velocity dispersion of the cluster, or
the intracluster gas temperature.
This is remarkable, especially since their clusters spanned a large
range in these cluster properties.
JFK96 also found E and S0 galaxies
to follow the same FP.
The JFK96 values
and
agree reasonably well with those from other studies in the literature
of cluster E (and S0) galaxies.
Different fitting methods and sample selection criteria
make it difficult to compare FP coefficients from different studies in detail.
The universality of
is harder to assess when the
distances to the clusters are not known.
JFK96 found that under the assumption that
is constant,
the derived peculiar velocities were small,
mostly
.
This means that
can not be very different from cluster to cluster.
It is interesting to note, that some studies find that
elliptical galaxies
in the field are systematically different from
elliptical galaxies in rich clusters.
For example, de Carvalho & Djorgovski (1992)
found that field ellipticals compared with cluster ellipticals
had a larger value of the FP zero point,
a larger intrinsic scatter in the FP,
and perhaps also a different value of the FP slope.
The larger value of the FP zero point for the field
can also be phrased as a larger surface brightness
(i.e.
)
and/or a lower velocity dispersion
at a given radius
(cf. Eq.
; remember that
).
de Carvalho & Djorgovski further found,
that at a fixed radius (or luminosity)
the field ellipticals were more blue and
had a lower
value.
A possible interpretation is that the field galaxies have
experienced merger-induced star formation.
Along those lines, Schweizer et al. (1990)
found for a sample of 36 mostly field ellipticals that
various line indices (such as
)
were correlated with
morphological fine-structure
(ripples, jets, boxyness, and so-called X-structure).
They found that the most probable interpretation was a
variation in mean age with morphological fine-structure.
This could be explained by merger-induced star formation.
Gregg (1992) found that the peculiar velocities derived from the
-
relation for the galaxies in the Schweizer et al. sample
were correlated with the morphological fine-structure.
It was concluded, that these differences in stellar population
induced spurious peculiar velocities.
Note, that in these studies a distance is determined for
each field galaxy,
as opposed to determining the distance to a cluster using many
galaxies in the given cluster.
The findings of de Carvalho & Djorgovski (1992)
could lead to the suspicion that there might be differences between
rich and poor clusters,
and between the central and outer regions of clusters.
JFK96 tested this by plotting the residuals from the FP versus
the projected cluster surface density. They did not find any correlation.
The found stability of the zero point of the FP
corresponds to % if the FP is used for distance determinations.
Lucey et al. (1991b) tested the stability of the zero point of the
-
relation
and found the derived distances to vary by only
%.
Their sample of
galaxies in the Coma cluster spanned a range of over 150 in
projected cluster surface density.
JFK96 found that the FP zero point for the
Lucey et al. sample had a comparable stability to that of the
JFK96 sample, i.e.
%.
Properties of E and S0 Galaxies in the Clusters HydraI and Coma
Master's Thesis, University of Copenhagen, July 1997
Bo Milvang-Jensen (milvang@astro.ku.dk)