Bengt Strömgren and modern astrometry

Development of photoelectric astrometry including the Hipparcos mission

Erik Høg, Niels Bohr Institute, Copenhagen

ABSTRACT: Bengt Strömgren is known as the famous astrophysicist and as a leading figure in many astronomical enterprises. Less well-known, perhaps, is his role in modern astrometry although this is equally significant. There is an unbroken chain of actions from his ideas and experiments with photoelectric astrometry since 1925 over the new meridian circle in Denmark in the 1950s up to the Hipparcos and Tycho Catalogues published in 1997.

Keywords: History of astronomy, astrometry, space vehicles: instruments

1. Introduction

This account follows a chain of actions beginning with an experiment on photoelectric astrometry in 1925 and culminating with the Hipparcos mission at the end of the 20th century, thus, in 1925 began a new era of positional astronomy comparable in significance to that of Tycho Brahe four centuries earlier. This brief account is far from being a complete history of Hipparcos, nor, of course, of the many other developments of photoelectric astrometry in the same period.

2. Strömgren's experiments with photoelectric astrometry

Bengt Strömgren in 1925 at the age of 17 years reported about experiments with photoelectric recording of star transits. In the focal plane of the meridian circle in Copenhagen he had placed a system of slits parallel to the meridian, Fig. 1. Behind the slits was a photo cell which received the light from the star after it had passed the slits. As the star moved across the slits the variations of light intensity gave corresponding variations in the photo current, and these variations of current were amplified and recorded.

At the annual meeting in 1926 of the Astronomische Gesellschaft in Copenhagen, Strömgren reported again. Karl Friedrich Küstner, at the time a great veteran in meridian astronomy, then drew a line from his predecessor in Bonn, Friedrich Argelander, who mastered the “eye-and-ear” method, to the young Strömgren, who wanted to introduce photoelectric recording of transits. Küstner told that Argelander in his old days was once introduced to the then new chronograph. He held the pushbutton in his hand - but then put it down with a shake of the head (Nielsen 1962).

Strömgren, however, found a serious drawback of his initial method: For reasons of statistical noise, it would only allow recording of stars to 6th or 7th magnitude with a medium size meridian circle. He therefore proposed a method of integration (Strömgren 1933) which should allow observation of much fainter stars. A mirror was placed behind a system of equidistant slits. It was switched quickly at predetermined times between two positions. In one position the light hits one photo cell, in the other another photo cell, both of them able to integrate all the light reaching them. If the switching takes place when the star is near the centre of a slit and midway between them, the cells will integrate almost equal amounts of light, and the ratio between these amounts can be translated to an accurate transit time, provided the dimensions of the system are known.

The mirror and the whole operation of this “second generation” system posed technical problems and no further experiments have been reported. The author of these pages heard about the two proposals as a student and that bore fruit later on as I shall explain, but I probably never discussed them with Strömgren in those early days.
3. Developments in Denmark and Hamburg

In 1940 Bengt Strömgren succeeded his father, Elis, as director of the observatory, then located in the centre of Copenhagen. The same year he took the initiative to build a new observatory outside Copenhagen. A site in Brorfelde 50 km west of Copenhagen was selected. Ten years later the concrete for the foundation of the main instrument, a new meridian circle, was poured, and finally, in 1953 the instrument itself could be mounted. I then got the task as a fourth year student to test the stability of the new instrument by photographic observations of a star very close to the North pole. Strömgren did not intend to implement a photoelectric method at the new instrument, but preferred a method where a photographic plate is moved along with the star. This method was technically less challenging, and was in fact put into operation in Brorfelde in the 1960s.

Most important for me as a young astronomer, was to grow up in an observatory where a new meridian circle was the main instrument and where this course for the institute had been defined by an outstanding scientist. Bengt Strömgren gave everybody, not only a youngster as me, confidence about the future line of astronomy. How very different at most other places in the world where astrometry, the astronomy of positions, was being discarded as old-fashioned stuff. At such places I would probably have become an astrophysicist, since I certainly did not want to do old stuff.

In 1956 I finished my studies and became a conscript soldier. Most of the time I had the opportunity to work in a laboratory (Niels Finsen Institute) measuring radioactive decay of dust, collected to follow the nuclear weapon testing of the two superpowers. The measurements were obtained by radioactive counting techniques and my experience with this brand new technique I could later apply to photoelectric astrometry.

In 1958 I moved to the Hamburg Observatory where both astrometry and astrophysics were held in high esteem; Otto Heckmann was the powerful director. My interest went in direction of classification of stars by objective prism spectra obtained with the big Schmidt telescope. I built an electronic equipment for digital recording of spectra on punched cards, which was also used for digital recording at the iris photometer, used for photometric measurement of photographic plates (Høg 1959). But soon I got the best idea I ever had (Høg 1960): I realized that Strömgren’s method with the switching mirror could be implemented very elegantly by a photon counting technique. I do not think any other astronomers used photon counting at that time; I had the idea from the counting of radioactive decay.
Briefly, the technique was as follows: A photo multiplier tube is placed behind a slit system, the photo-electrons are counted in short time intervals, e.g. 0.2 seconds, controlled by an accurate clock, and these counts are recorded on punched tape. Later numerical analysis of the counts in a computer gives the transit times across the slits. In principle, the transit time for individual slits could be derived, or the transit time for a group of slits. The latter method would be less sensitive to noise, and in the course of time both method have been widely applied.

The slits should be inclined to the stellar motion by 45 degrees in alternating directions. By such a “fishbone grid” a two-dimensional measurement of the star in the focal plane became possible (Fig. 2), corresponding to right ascension and declination.

Astrometry by means of accurate slits and photon counting was subsequently applied on meridian circles, on long-focus telescopes, and ultimately on the first astrometry satellite, Hipparcos. French astronomers became interested in the method, and I saw reports in the early 1960s from Lille and Besançon where they worked with “une grille de Høg”, as they called the system of inclined slits, but I do not recall if they used photon counting. The method with the fishbone grid and photon counting was crucial in the proposal for space astrometry by Pierre Lacroute.

Heckmann was immediately interested in my proposal, and I recall that he helped me write the report in 1960. He wanted the method implemented on the Hamburg meridian circle for the planned expedition to Perth, Western Australia. That kept me busy for the next decade and resulted in the Perth 70 Catalogue of positions for 24,900 stars (Høg & von der Heide 1976).

4. Space astrometry

In 1967 I heard the presentation in Prague by Lacroute (1967) about space astrometry. This was the first time that such type of astronomy was proposed for a space mission. The potential advantages were clear, no atmosphere and no gravity, but the technical problems seemed utterly underestimated since a total mission cost of only 10 million French francs was claimed. The proposal did not start any activity outside France, and I was fully occupied with other matters; at that time I did not have any vision of space astrometry. But Lacroute’s vision was fortunately shared by other French astronomers, especially Jean Kovalevsky. He supported the idea and finally had the project converted from being a French national project to become European through ESA.
In 1975 I was invited to be member of a small working group of astronomers and ESA engineers set up to make a mission definition study of space astrometry. I felt that I had to join the group in spite of my profound scepticism about Lacroute's proposals and also a lack of interest in space techniques. At the first meeting of the group on 14 October the ESA chairman urged us to be independent of previous ideas and to propose whatever space techniques could most efficiently achieve our scientific goals. With this encouragement in mind I designed in six weeks my vision of a scanning astrometry satellite, called TYCHO. From this design study many (seven) new features were adopted in the final Hipparcos satellite. The name seemed proper for the first satellite especially designed for astrometry, the art of science mastered by Tycho Brahe.

TYCHO used an image dissector tube as detector behind a modulating grid. This detection was 100 times more efficient than the system of slits in front of a photo-multiplier tube as in Lacroute's previous proposals. TYCHO required active attitude control in order to perform an optimal scan along great circles. The spin axis should revolve around the Sun at a constant angle. It included a star mapper so that it would be able to use an input catalogue of 100,000 stars selected for their scientific interest and being observed with a carefully selected observing strategy. The grid measured only one-dimensionally along the scan direction. Therefore the beam combiner in front of the telescope needed only two reflecting surfaces. It would then be easier to manufacture than the beam combiner with three or five surfaces required for the two-dimensional scanning always preferred by Lacroute in his designs called TD-options.

Lacroute adopted only two ideas from TYCHO: an image dissector tube and a modulating grid for a new TD-option of a scanning satellite, which he considered to be technically simpler than TYCHO.

I had called my design TYCHO, but for the study report in the spring of 1976 the chairman suggested that the names TYCHO and TD were not good. They were then changed to respectively Option A and Option B. More details about the two options A and B are given, e.g., by Høg (1997), Kovalevsky (2005) and Turon & Arenou (2008).

Several years later Kovalevsky introduced the name HIPPARCOS as an acronym for the final satellite, based on the TYCHO/Option A. I had preferred TYCHO which I still considered to be a proper name for an ESA astrometric satellite. Luckily, in 1981 I was able to invent the sky mapper experiment and gave it the proper name without hearing any objections. This experiment finally resulted in the Tycho-2 Catalogue with astrometry and two-colour photometry of 2.5 million stars, published by Høg et al. (2000). Tycho-2 is now the preferred astrometric reference catalogue for star brighter than 11th magnitude, used to tie the bright 120,000 stars of the Hipparcos system to astrometric observations of fainter stars obtained by ground-based CCD telescopes.

In a large team a few will often stand out; Andrew Murray, my old colleague and member of the Hipparcos science team, once said: “Erik, the best you have ever done for astronomy was to find Lennart!” and I agreed. I “found” Lennart Lindegren in 1973 while a 23 year old student at Lund Observatory (see Høg 2008b), and I have had the privilege to work with him ever since. I brought him into Hipparcos in 1976 and without his unfailing genius in all mathematical, computational and optical matters the project would not have been ripe for approval in 1980, and probably never.

The Hipparcos project won the competition with the EXUV project in ESAs Astronomy Working Group, but only barely so according to Edward van den Heuvel (see Høg 2008c), X-ray astronomer and a member of AWG until the end of 1979, and much in favour of Hipparcos. Several votings took place in AWG before 1980, and at one of the crucial ones Hipparcos stayed for further consideration only because one person had been convinced to change position.

My own attitude then was that if Hipparcos had lost I was ready to quit the project for lack of faith that the astrophysicists would ever let it through.
Figure 3. Astrometric accuracy through 22 centuries from Hipparchus to Gaia.

More explanation will be given in Høg (2008a), presently in preparation.

The final voting in AWG took place on 24 January 1980 (ESA 1980a): Of the 13 members present, 8 voted in favour of Hipparcos and 5 in favour of EXUV, but dangers for Hipparcos laid ahead. At its meeting on 6th and 7th February 1980 the Science Advisory Committee (SAC) discussed six missions and preferred (ESA 1980b) the combined Comet/Geos-3 mission and the Hipparcos mission. The SAC did not make the choice between these two missions which represented the interests of the ESA working groups for respectively the solar system and astronomy. Both missions were therefore recommended, though on certain conditions, and the process ultimately led ESA to do something ESA had never done before: approve two missions at the same time. SAC expressed a preference for Hipparcos over the EXUV mission if the payload is funded outside the mandatory budget of ESA. In the end Hipparcos was funded within the mandatory budget, so Hipparcos was up against great hurdles all the time, but our mission won in the end, thanks to negotiations of which details are reported especially by Jean Kovalevsky in another report (Høg 2008c).

After approval the project gained great momentum and was carried through by large enthusiastic teams (Perryman et al. 1997) working many years guided by the Hipparcos Science Team whose chairman Michael Perryman personifies this phase of the mission more than anyone.

5. Conclusion

Bengt Strömgren appears clearly at the root of my contributions to astrometry, including Hipparcos, and he was directly active before the mission approval in 1980 in order to ensure Danish and Swedish support. He would have seen the Gaia mission (Fig. 3) with astrometry, photometry and radial velocities as the ultimate fulfilment of his quest since the 1930s for comprehensive studies of our Milky Way. It seems from the unbroken chain of actions defined above that there would have been no Hipparcos, no space astrometry
with a scanning satellite, if any of the five persons Bengt Strömgren, myself, Pierre Lacroute, Jean Kovalevsky or Lennart Lindegren had been absent from the scene before 1980.

Acknowledgements: I am grateful to Catherine Turon, Jean Kovalevsky, and Lennart Lindegren for comments to earlier versions and for their agreement to the present text. I also acknowledge comments from Andrew Murray, Edward van den Heuvel, and colleagues in Copenhagen: Jens Knude and Holger Pedersen.

References

ESA 1980a, Astronomy Working Group: report ASTRO(80)2
ESA 1980b, Science Advisory Committee: report SAC(80)7
Høg E. 1959, Physikalische Abhandlungen, vol. X 214
Høg E. 1997, From the Hipparcos Mission Definition to Tycho, Hipparcos Venice ’97, SP-402, xxvii
Lacroute P. 1967, Proceedings of the Fourteenth General Assembly, IAU Trans., XIIIB, 63
Nielsen A.V. 1962, Hundrede års astronomi på Østervold, Nordisk Astronomisk Tidsskrift, 1
Strömgren B. 1926, Photoelektrische Registrierungen von Sterndurchgängen, Vierteljahrschrift der Astronomischen Gesellschaft, vol. 61, 199
Strömgren B. 1933, Photoelektrische Registrierungen von Sterndurchgängen, Vierteljahrschrift der AG, vol. 68, 365